Investigating Jet-Medium Interactions with Two-Particle Correlations in PHENIX

Paul Stankus

Oak Ridge National Lab
For the PHENIX Collaboration
CIPANP06

Side-to-beam view

Along-the-beam view

STAR Experiment at RHIC

Au+Au at $\sqrt{s_{NN}} = 200$ GeV

Two-Source Model

Particles B from low- $p_{\rm T}$ "Partner" bin

Jet 1 Jet 2 Therm Therm Therm Therm

Particles A

Thermal-Thermal

Singles
$$\frac{dN^A}{d\phi_A} \propto 1 + 2v_2^A \cos 2(\phi_A - \Psi_{RP}) \text{ same for } B$$
Pairs
$$\frac{dN^{AB}}{d(\Delta\phi)} = \underbrace{b_0 \left[1 + 2\left\langle v_2^A v_2^B \right\rangle \cos(2\Delta\phi)\right]}_{\text{Therm-Therm Jet-Other Jet}} + \underbrace{J(\Delta\phi)}_{\text{Same-Jet Pairs combinatoric "Background Pairs"}}$$

 $b_{
m 0}$ Background Level Fix by matching, fitting, combinatoric+

 $J(\Delta\phi)$ Jet-Induced Pairs Fragmentation and medium response

$$\frac{dN^{AB}}{d(\Delta\phi)} \propto \frac{1}{N_A} \frac{dN^{AB}}{d(\Delta\phi)} \propto \frac{dN^{AB}/d(\Delta\phi) \text{ same - event}}{dN^{AB}/d(\Delta\phi) \text{ mixed - event}}$$
Pairs Conditional Yield Correlation Function

Particle Type Trigger P_T

h±-h±

C: 20-40%

T: 5-6 GeV P: 2-3 GeV

Event Centrality Partner P_T

Away-Side Broadening (and how!)

PHENIX nucl-ex/0507004 submitted to PRL

h± – h±	C: Various
T: 2.5 - 4	P: 1 - 2.5

h[±]-h[±] C: Various
T: 2.5 - 4 P: 1 - 2.5

Suggestive of...

Cherenkov cones? Mach cones?

PWS *opinions* based on PHENIX Preliminary and on PHENIX nucl-ex/0507004 submitted to PRL

STAR nucl-ex/0604018 Subm.

Summary

- 1. Away-side jet partners shows **three behaviors** in Au+Au:
 - Complete disappearance at moderate $P_{\text{T Trig}} P_{\text{T Partner}}$ "Shoulder" peaks away from $\Delta \phi = \pi$ for low $P_{\text{T Partner}}$ Normal shape, reduced magnitude at high $P_{\text{T Trig}} P_{\text{partner}}$
- 2. Shoulder peak shape similar in-plane and out-of-plane
- 3. Results for h^{\pm} - h^{\pm} confirmed in π^{0} - h^{\pm} measurements
- 4. PHENIX also has preliminary results in Cu+Cu, and for γ

 Inclusive-h[±] correlations (not shown here); we are working on γ

 Direct-h[±] through several methods.